Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.569
Filtrar
1.
Arch Virol ; 169(5): 110, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664287

RESUMO

Advancements in high-throughput sequencing and the development of new bioinformatics tools for large-scale data analysis play a crucial role in uncovering virus diversity and enhancing our understanding of virus evolution. The discovery of the ormycovirus clades, a group of RNA viruses that are phylogenetically distinct from all known Riboviria members and are found in fungi, highlights the value of these tools for the discovery of novel viruses. The aim of this study was to examine viral populations in fungal hosts to gain insights into the diversity, evolution, and classification of these viruses. Here, we report the molecular characterization of a newly discovered ormycovirus, which we have named "Hortiboletus rubellus ormycovirus 1" (HrOMV1), that was found in the ectomycorrhizal fungus Hortiboletus rubellus. The bipartite genome of HrOMV1, whose nucleotide sequence was determined by HTS and RLM-RACE, consists of two RNA segments (RNA1 and RNA2) that exhibit similarity to those of previously studied ormycoviruses in their organization and the proteins they encode. The presence of upstream, in-frame AUG triplets in the 5' termini of both RNA segments suggests that HrOMV1, like certain other ormycoviruses, employs a non-canonical translation initiation strategy. Phylogenetic analysis showed that HrOMV1 is positioned within the gammaormycovirus clade. Its putative RNA-dependent RNA polymerase (RdRp) exhibits sequence similarity to those of other gammaormycovirus members, the most similarity to that of Termitomyces ormycovirus 1, with 33.05% sequence identity. This protein was found to contain conserved motifs that are crucial for RNA replication, including the distinctive GDQ catalytic triad observed in gammaormycovirus RdRps. The results of this study underscore the significance of investigating the ecological role of mycoviruses in mycorrhizal fungi. This is the first report of an ormycovirus infecting a member of the ectomycorrhizal genus Hortiboletus.


Assuntos
Genoma Viral , Micorrizas , Filogenia , Vírus de RNA , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Micorrizas/genética , Micorrizas/virologia , Micovírus/genética , Micovírus/classificação , Micovírus/isolamento & purificação , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Virais/genética , Fases de Leitura Aberta , Sequência de Bases
2.
BMC Ecol Evol ; 24(1): 54, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664655

RESUMO

BACKGROUND: Bolete cultivation is economically and ecologically valuable. Ectomycorrhizae are advantageous for plant development and productivity. This study investigated how boletes affect the formation of Pinus thunbergii and Quercus acutissima ectomycorrhizae using greenhouse-based mycorrhizal experiments, inoculating P. thunbergii and Q. acutissima with four species of boletes (Suillus bovinus, Suillus luteus, Suillus grevillei, and Retiboletus sinensis). RESULTS: Three months after inoculation, morphological and molecular analyses identified S. bovinus, S. luteus, S. grevillei and R. sinensis ectomycorrhizae formation on the roots of both tree species. The mycorrhizal infection rate ranged from 40 to 55%. The host plant species determined the mycorrhiza morphology, which was independent of the bolete species. Differences in plant growth, photosynthesis, and endogenous hormone secretion primarily correlated with the host plant species. Infection with all four bolete species significantly promoted the host plants' growth and photosynthesis rates; indole-3-acetic acid, zeatin, and gibberellic acid secretion increased, and the abscisic acid level significantly decreased. Indole-3-acetic acid was also detected in the fermentation broths of all bolete species. CONCLUSIONS: Inoculation with bolete and subsequent mycorrhizae formation significantly altered the morphology and hormone content in the host seedlings, indicating growth promotion. These findings have practical implications for culturing pine and oak tree species.


Assuntos
Micorrizas , Pinus , Quercus , Micorrizas/fisiologia , Quercus/microbiologia , Quercus/crescimento & desenvolvimento , Pinus/microbiologia , Pinus/crescimento & desenvolvimento , Basidiomycota/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Fotossíntese
3.
New Phytol ; 242(4): 1448-1475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581203

RESUMO

Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.


Assuntos
Evolução Biológica , Modelos Biológicos , Micorrizas , Micorrizas/fisiologia , Micorrizas/genética , Ecologia , Simbiose/genética , Basidiomycota/fisiologia , Basidiomycota/genética
4.
Curr Biol ; 34(8): 1705-1717.e6, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38574729

RESUMO

Plants establish symbiotic associations with arbuscular mycorrhizal fungi (AMF) to facilitate nutrient uptake, particularly in nutrient-limited conditions. This partnership is rooted in the plant's ability to recognize fungal signaling molecules, such as chitooligosaccharides (chitin) and lipo-chitooligosaccharides. In the legume Medicago truncatula, chitooligosaccharides trigger both symbiotic and immune responses via the same lysin-motif-receptor-like kinases (LysM-RLKs), notably CERK1 and LYR4. The nature of plant-fungal engagement is opposite according to the outcomes of immunity or symbiosis signaling, and as such, discrimination is necessary, which is challenged by the dual roles of CERK1/LYR4 in both processes. Here, we describe a LysM-RLK, LYK8, that is functionally redundant with CERK1 for mycorrhizal colonization but is not involved in chitooligosaccharides-induced immunity. Genetic mutation of both LYK8 and CERK1 blocks chitooligosaccharides-triggered symbiosis signaling, as well as mycorrhizal colonization, but shows no further impact on immunity signaling triggered by chitooligosaccharides, compared with the mutation of CERK1 alone. LYK8 interacts with CERK1 and forms a receptor complex that appears essential for chitooligosaccharides activation of symbiosis signaling, with the lyk8/cerk1 double mutant recapitulating the impact of mutations in the symbiosis signaling pathway. We conclude that this novel receptor complex allows chitooligosaccharides activation specifically of symbiosis signaling and helps the plant to differentiate between activation of these opposing signaling processes.


Assuntos
Quitina , Quitosana , Medicago truncatula , Micorrizas , Proteínas de Plantas , Simbiose , Micorrizas/fisiologia , Quitina/metabolismo , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Medicago truncatula/imunologia , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Imunidade Vegetal , Oligossacarídeos/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
5.
Plant Cell Rep ; 43(5): 123, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642148

RESUMO

KEY MESSAGE: CitCAT1 and CitCAT2 were cloned and highly expressed in mature leaves. High temperatures up-regulated CitCAT1 expression, while low temperatures and Diversispora versiformis up-regulated CitCAT2 expression, maintaining a low oxidative damage. Catalase (CAT), a tetrameric heme-containing enzyme, removes hydrogen peroxide (H2O2) to maintain low oxidative damage in plants exposed to environmental stress. This study aimed to clone CAT genes from Citrus sinensis cv. "Oita 4" and analyze their expression patterns in response to environmental stress, exogenous abscisic acid (ABA), and arbuscular mycorrhizal fungal inoculation. Two CAT genes, CitCAT1 (NCBI accession: PP067858) and CitCAT2 (NCBI accession: PP061394) were cloned, and the open reading frames of their proteins were 1479 bp and 1539 bp, respectively, each encoding 492 and 512 amino acids predicted to be localized in the peroxisome, with CitCAT1 being a stable hydrophilic protein and CitCAT2 being an unstable hydrophilic protein. The similarity of their amino acid sequences reached 83.24%, and the two genes were distantly related. Both genes were expressed in stems, leaves, flowers, and fruits, accompanied by the highest expression in mature leaves. In addition, CitCAT1 expression was mainly up-regulated by high temperatures (37 °C), exogenous ABA, and PEG stress within a short period of time, whereas CitCAT2 expression was up-regulated by exogenous ABA and low-temperature (4 °C) stress. Low temperatures (0 °C) for 12 h just up-regulated CitCAT2 expression in Diversispora versiformis-inoculated plants, and D. versiformis inoculation up-regulated CitCAT2 expression, along with lower hydrogen peroxide and malondialdehyde levels in mycorrhizal plants at low temperatures. It is concluded that CitCAT2 has an important role in resistance to low temperatures as well as mycorrhizal enhancement of host resistance to low temperatures.


Assuntos
Fungos , Micorrizas , Micorrizas/fisiologia , Peróxido de Hidrogênio , Estresse Fisiológico/genética , Clonagem Molecular
6.
PLoS One ; 19(4): e0294394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635811

RESUMO

Drought stress (DS) is one of the important abiotic stresses facing cash crops today. Drought can reduce plant growth and development, inhibit photosynthesis, and thus reduce plant yield. In this experiment, we investigated the protective mechanism of AMF on plant photosynthetic system by inoculating Paris polyphylla var. yunnanensis(P.py) with a clumping mycorrhizal fungus (AMF) under drought conditions. The drought environment was maintained by weighing AMF plants and non-AMF plants. The relative water content (RWC) of plant leaves was measured to determine its drought effect. DS decreased the RWC of plants, but AMF was able to increase the RWC of plants. chlorophyll a fluorescence curve measurements revealed that DS increased the OKJIP curve of plants, but AMF was able to reduce this trend, indicating that AMF increased the light absorption capacity of plants. DS also caused a decrease in plant Y(I) and Y(II). ETRI and ETRII, and increased Y(NO) and Y(NA) in plants, indicating that DS caused photosystem damage in plants. For the same host, different AMFs did not help to the same extent, but all AMFs were able to help plants reduce this damage and contribute to the increase of plant photosynthesis under normal water conditions.


Assuntos
Liliaceae , Micorrizas , Clorofila A , Secas , Água
7.
Environ Microbiol Rep ; 16(2): e13253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575147

RESUMO

Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi-host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner-generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.


Assuntos
Micorrizas , Micorrizas/genética , Árvores/microbiologia , Filogenia , Biodiversidade , Fungos/genética , Plantas/microbiologia , Solo , Microbiologia do Solo
8.
Fungal Biol ; 128(2): 1724-1734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575246

RESUMO

The ectomycorrhizal fungi Tuber melanosporum Vittad. and Tuber aestivum Vittad. produce highly valuable truffles, but little is known about the soil fungal communities associated with these truffle species in places where they co-occur. Here, we compared soil fungal communities present in wild and planted truffle sites, in which T. melanosporum and T. aestivum coexist, in Mediterranean and temperate regions over three sampling seasons spanning from 2018 to 2019. We showed that soil fungal community composition and ectomycorrhizal species composition are driven by habitat type rather than climate regions. Also, we observed the influence of soil pH, organic matter content and C:N ratio structuring total and ectomycorrhizal fungal assemblages. Soil fungal communities in wild sites revealed more compositional variability than those of plantations. Greater soil fungal diversity was found in temperate compared to Mediterranean sites when considering all fungal guilds. Ectomycorrhizal diversity was significantly higher in wild sites compared to plantations. Greater mould abundance at wild sites than those on plantation was observed while tree species and seasonal effects were not significant predictors in fungal community structure. Our results suggested a strong influence of both ecosystem age and management on the fungal taxa composition in truffle habitats.


Assuntos
Micobioma , Micorrizas , Ecossistema , Solo , Árvores , Microbiologia do Solo
9.
New Phytol ; 242(4): 1691-1703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659111

RESUMO

Understanding the complex interactions between trees and fungi is crucial for forest ecosystem management, yet the influence of tree mycorrhizal types, species identity, and diversity on tree-tree interactions and their root-associated fungal communities remains poorly understood. Our study addresses this gap by investigating root-associated fungal communities of different arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) tree species pairs (TSPs) in a subtropical tree diversity experiment, spanning monospecific, two-species, and multi-species mixtures, utilizing Illumina sequencing of the ITS2 region. The study reveals that tree mycorrhizal type significantly impacts the alpha diversity of root-associated fungi in monospecific stands. Meanwhile, tree species identity's influence is modulated by overall tree diversity. Tree-related variables and spatial distance emerged as major drivers of variations in fungal community composition. Notably, in multi-species mixtures, compositional differences between root fungal communities of AM and EcM trees diminish, indicating a convergence of fungal communities irrespective of mycorrhizal type. Interestingly, dual mycorrhizal fungal communities were observed in these multi-species mixtures. This research underscores the pivotal role of mycorrhizal partnerships and the interplay of biotic and abiotic factors in shaping root fungal communities, particularly in varied tree diversity settings, and its implications for effective forest management and biodiversity conservation.


Assuntos
Biodiversidade , Florestas , Micobioma , Micorrizas , Raízes de Plantas , Especificidade da Espécie , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Raízes de Plantas/microbiologia
12.
Sci Total Environ ; 927: 172424, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614348

RESUMO

Atmospheric nitrogen (N) deposition inevitably alters soil nutrient status, subsequently prompting plants to modify their root morphology (i.e., adopting a do-it-yourself strategy), mycorrhizal symbioses (i.e., outsourcing strategy), and root exudation (i.e., nutrient-mining strategy) linking with resource acquisition. However, how N deposition influences the integrated pattern of these resource-acquisition strategies remains unclear. Furthermore, most studies in forest ecosystems have focused on understory N and inorganic N deposition, neglecting canopy-associated processes (e.g., N interception and assimilation) and the impacts of organic N on root functional traits. In this study, we compared the effects of canopy vs understory, organic vs inorganic N deposition on eight root functional traits of Moso bamboo plants. Our results showed that N deposition significantly decreased arbuscular mycorrhizal fungi (AMF) colonization, altered root exudation rate and root foraging traits (branching intensity, specific root area, and length), but did not influence root tissue density and N concentration. Moreover, the impacts of N deposition on root functional traits varied significantly with deposition approach (canopy vs. understory), form (organic vs. inorganic), and their interaction, showing variations in both intensity and direction (positive/negative). Furthermore, specific root area and length were positively correlated with AMF colonization under canopy N deposition and root exudation rate in understory N deposition. Root trait variation under understory N deposition, but not under canopy N deposition, was classified into the collaboration gradient and the conservation gradient. These findings imply that coordination of nutrient-acquisition strategies dependent on N deposition approach. Overall, this study provides a holistic understanding of the impacts of N deposition on root resource-acquisition strategies. Our results indicate that the evaluation of N deposition on fine roots in forest ecosystems might be biased if N is added understory.


Assuntos
Micorrizas , Nitrogênio , Raízes de Plantas , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo , Micorrizas/fisiologia , Solo/química , Florestas , China , Simbiose , Sasa
13.
Sci Total Environ ; 927: 172349, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615770

RESUMO

Nitrogen (N) deposition is a global environmental issue that can have significant impacts on the community structure and function in ecosystems. Fungi play a key role in soil biogeochemical cycles and their community structures are tightly linked to the health and productivity of forest ecosystems. Based on high-throughput sequencing and ergosterol extraction, we examined the changes in community structure, composition, and biomass of soil ectomycorrhizal (ECM) and saprophytic (SAP) fungi in 0-10 cm soil layer after 8 years of continuous N addition and their driving factors in a temperate Korean pine plantation in northeast China. Our results showed that N addition increased fungal community richness, with the highest richness and Chao1 index under the low N treatment (LN: 20 kg N ha-1 yr-1). Based on the FUN Guild database, we found that the relative abundance of ECM and SAP fungi increased first and then decreased with increasing N deposition concentration. The molecular ecological network analysis showed that the interaction between ECM and SAP fungi was enhanced by N addition, and the interaction was mainly positive in the ECM fungal network. N addition increased fungal biomass, and the total fungal biomass (TFB) was the highest under the MN treatment (6.05 ± 0.3 mg g-1). Overall, we concluded that N addition changed soil biochemical parameters, increased fungal activity, and enhanced functional fungal interactions in the Korean pine plantation over an 8-year simulated N addition. We need to consider the effects of complex soil conditions on soil fungi and emphasize the importance of regulating soil fungal community structure and biomass for managing forest ecosystems. These findings could deepen our understanding of the effects of increased N deposition on soil fungi in temperate forests in northern China, which can provide the theoretical basis for reducing the effects of increased N deposition on forest soil.


Assuntos
Biomassa , Fungos , Nitrogênio , Pinus , Microbiologia do Solo , Solo , China , Pinus/microbiologia , Nitrogênio/análise , Solo/química , Micorrizas/fisiologia , Micobioma , Florestas , Fertilizantes/análise
14.
Sci Rep ; 14(1): 8633, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622240

RESUMO

The study aimed to find the best Arbuscular Mycorrhizal Fungi (AMF) strain for cotton growth in Xinjiang's salinity and alkali conditions. Cotton (Xinluzao 45) was treated with Funneliformis mosseae (GM), Rhizophagus irregularis (GI), and Claroideoglomus etunicatum (GE) as treatments, while untreated cotton served as the control (CK). Salinity stress was applied post-3-leaf stage in cotton. The study analyzed cotton's reactions to diverse saline-alkali stresses, focusing on nutrient processes and metabolism. By analyzing the growth and photosynthetic characteristics of plants inoculated with Funneliformis mosseae to evaluate its salt tolerance. Saline-alkali stress reduced chlorophyll and hindered photosynthesis, hampering cotton growth. However, AMF inoculation mitigated these effects, enhancing photosynthetic rates, CO2 concentration, transpiration, energy use efficiency, and overall cotton growth under similar stress levels. GM and GE treatments yielded similar positive effects. AMF inoculation enhanced cotton plant height and biomass. In GM treatment, cotton exhibited notably higher root length than other treatments, showing superior growth under various conditions. In summary, GM-treated cotton had the highest infection rate, followed by GE-treated cotton, with GI-treated cotton having the lowest rate (GM averaging 0.95). Cotton inoculated with Funneliformis mosseae, Rhizophagus irregularis, and Claroideoglomus etunicatum juvenile showed enhanced chlorophyll and photosynthetic levels, reducing salinity effects. Funneliformis mosseae had the most significant positive impact.


Assuntos
Fungos , Micorrizas , Micorrizas/metabolismo , Plântula , Gossypium/metabolismo , Álcalis , Fotossíntese , Clorofila/metabolismo , Solução Salina
15.
Microb Ecol ; 87(1): 58, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602532

RESUMO

Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.


Assuntos
Microbiota , Micorrizas , China , Florestas , Raios gama , Solo
16.
New Phytol ; 242(4): 1739-1752, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581206

RESUMO

The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha- and beta-diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground-aboveground linkages, with multifaceted impacts on soil development and associated ecological processes.


Assuntos
Biodiversidade , Camada de Gelo , Micorrizas , Micorrizas/fisiologia , Camada de Gelo/microbiologia , Solo/química , Microclima , Microbiologia do Solo
17.
New Phytol ; 242(4): 1436-1440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594221

RESUMO

Global assessments of mycorrhizal symbiosis present large sampling gaps in rich biodiversity regions. Filling these gaps is necessary to build large-scale, unbiased mycorrhizal databases to obtain reliable analyses and prevent misleading generalizations. Underrepresented regions in mycorrhizal research are mainly in Africa, Asia, and South America. Despite the high biodiversity and endemism in these regions, many groups of organisms remain understudied, especially mycorrhizal fungi. In this Viewpoint, we emphasize the importance of inclusive and collaborative continental efforts in integrating perspectives for comprehensive trait database development and propose a conceptual framework that can help build large mycorrhizal databases in underrepresented regions. Based on the four Vs of big data (volume, variety, veracity, and velocity), we identify the main challenges of constructing a large mycorrhizal dataset and propose solutions for each challenge. We share our collaborative methodology, which involves employing open calls and working groups to engage all mycorrhizal researchers in the region to build a South American Mycorrhizal Database. By fostering interdisciplinary collaborations and embracing a continental-scale approach, we can create robust mycorrhizal trait databases that provide valuable insights into the evolution, ecology, and functioning of mycorrhizal associations, reducing the geographical biases that are so common in large-scale ecological studies.


Assuntos
Bases de Dados Factuais , Micorrizas , Micorrizas/fisiologia , Comportamento Cooperativo , Biodiversidade , Simbiose , Característica Quantitativa Herdável , América do Sul
18.
New Phytol ; 242(4): 1614-1629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594212

RESUMO

Species-specific differences in nutrient acquisition strategies allow for complementary use of resources among plants in mixtures, which may be further shaped by mycorrhizal associations. However, empirical evidence of this potential role of mycorrhizae is scarce, particularly for tree communities. We investigated the impact of tree species richness and mycorrhizal types, arbuscular mycorrhizal fungi (AM) and ectomycorrhizal fungi (EM), on above- and belowground carbon (C), nitrogen (N), and phosphorus (P) dynamics. Soil and soil microbial biomass elemental dynamics showed weak responses to tree species richness and none to mycorrhizal type. However, foliar elemental concentrations, stoichiometry, and pools were significantly affected by both treatments. Tree species richness increased foliar C and P pools but not N pools. Additive partitioning analyses showed that net biodiversity effects of foliar C, N, P pools in EM tree communities were driven by selection effects, but in mixtures of both mycorrhizal types by complementarity effects. Furthermore, increased tree species richness reduced soil nitrate availability, over 2 yr. Our results indicate that positive effects of tree diversity on aboveground nutrient storage are mediated by complementary mycorrhizal strategies and highlight the importance of using mixtures composed of tree species with different types of mycorrhizae to achieve more multifunctional afforestation.


Assuntos
Biodiversidade , Carbono , Micorrizas , Nitrogênio , Fósforo , Folhas de Planta , Solo , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Fósforo/metabolismo , Solo/química , Nitrogênio/metabolismo , Carbono/metabolismo , Biomassa , Microbiologia do Solo , Elementos Químicos , Especificidade da Espécie
19.
Sci Total Environ ; 926: 172121, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38565345

RESUMO

Mycorrhizae and their hyphae play critical roles in soil organic carbon (SOC) accumulation. However, their individual contributions to SOC components and stability under climate warming conditions remain unclear. This study investigated the effects of warming on the SOC pools of Picea asperata (an ectomycorrhizal plant) and Fargesia nitida (an arbuscular mycorrhizal plant) mycorrhizae/hyphae on the eastern Tibetan Plateau. The results indicated that mycorrhizae made greater contributions to SOC accumulation than hyphae did by increasing labile organic carbon (LOC) components, such as particle organic carbon (POC), easily oxidizable organic carbon, and microbial biomass carbon, especially under warming conditions. Plant species also had different effects on SOC composition, resulting in higher mineral-associated organic carbon (MAOC) contents in F. nitida plots than in P. asperata plots; consequently, the former favored SOC stability more than the latter, with a lower POC/MAOC. Partial least-squares path modelling further indicated that mycorrhizae/hyphae indirectly affected LOC pools, mainly by changing soil pH and enzyme activities. Warming had no significant effect on SOC content but did change SOC composition by reducing LOC through affecting soil pH and iron oxides and ultimately increasing SOC stability in the presence of mycorrhizae for both plants. Therefore, the mycorrhizae of both plants are major contributors to the variation of SOC components and stability under warming conditions.


Assuntos
Micorrizas , Solo , Solo/química , Micorrizas/química , Carbono/análise , Hifas/química , Tibet , China , Plantas , Minerais , Microbiologia do Solo
20.
Methods Mol Biol ; 2756: 291-304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427300

RESUMO

Full compatible interactions between crop plants and endoparasitic sedentary nematodes (ESNs) lead to severe infestation of the roots and plant growth impairing, as well as to the increase of nematode population in the soil that is a threat for the next planting crop. In the absence of activators, basic plant defense is overcome by nematode secretion of effectors that suppress defense gene expression, inhibit ROS generation and the oxidative burst used by plants to hamper nematode feeding site settlement and limit its development and reproduction. Activators can be exogenously added as a preventive measure to prime plants and strengthen their defense against ESNs. Activators can be an array of antioxidant compounds or biocontrol agents, such as mutualist microorganisms living in the rhizosphere (biocontrol fungi (BCF), arbuscular mycorrhizal fungi (AMF), plant growth-promoting bacteria (PGPB), etc.). In this chapter, methods are described for usage of both salicylic acid (SA) and its methylated form (Met-SA), and BCF/AMF as elicitors of resistance of vegetable crops against root-knot nematodes (RKNs). The rhizosphere-living BCF/AMF were recovered from commercial formulates pre-incubated in suitable growth media and provided exclusively as soil drench of potted plants. The plant hormones SA and Met-SA were provided to plants as soil drench, foliar spray, and root dip. It is indicated that activators' dosages and plant age are crucial factors in determining the success of a pre-treatment to reduce nematode infection. Therefore, dosages should be expressed as amounts of activators per g of plant weight at treatment. Thresholds exist above which dosages start to work; overdoses were found to be toxic to plants and useless as activators.


Assuntos
Micorrizas , Nematoides , Animais , Agentes de Controle Biológico/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/metabolismo , Nematoides/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Micorrizas/metabolismo , Produtos Agrícolas/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...